

Fig. 2. Projection along the a direction of the atomic arrangement of $\mathrm{Te}(\mathrm{OH})_{6} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Hatched octahedra represent the $\mathrm{Te}(\mathrm{OH})_{6}$ groups and empty circles are the NH_{4} groups. H atoms have been omitted for clarity
as an almost regular octahedron with, in the present study, $\mathrm{Te}-\mathrm{O}$ distances ranging from 1.909 to $1.919 \AA$ and $\mathrm{Te}-\mathrm{O}-\mathrm{H}$ angles varing from 106 to 112°. As shown by Fig. 2 these $\mathrm{Te}(\mathrm{OH})_{6}$ groups are located in planes $y=0$ and $\frac{1}{2}$ and so form layers alternating with the phosphoric ones.

The $\left(\mathrm{NH}_{4}\right) \mathrm{O}_{n}$ polyhedra. The two NH_{4} groups appear as moderately distorted tetrahedra with $\mathrm{N}-\mathrm{H}$ distances ranging from 0.78 to $0.87 \AA$ in $\mathrm{N}(1) \mathrm{H}_{4}$ and from 0.85 to $1.03 \AA$ in $\mathrm{N}(2) \mathrm{H}_{4}$. $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angles spread from 96 to 127° in the first group and from 96 to 133° in the second with, in
both cases, an average value of 109°. Within a range of $3.50 \AA \mathrm{~N}(1) \mathrm{H}_{4}$ has ten O neighbours while $\mathrm{N}(2) \mathrm{H}_{4}$ has only six.

The hydrogen bonds. Among the main geometrical features of the hydrogen-bond network reported in Table 2 it must be noted that all the hydrogen bonds involving H atoms of the $\mathrm{Te}(\mathrm{OH})_{6}$ or NH_{4} groups are classical with $\mathrm{N}-\mathrm{O}$ or $\mathrm{O}-\mathrm{O}$ distances ranging from 2.628 to $3.029 \AA$, while those connecting the $\mathrm{P}_{2} \mathrm{O}_{7} \mathrm{H}_{2}^{2-}$ groups correspond to much shorter distances (2.523 and $2.594 \AA$), comparable to the $\mathrm{O}-\mathrm{O}$ distances inside a PO_{4} tetrahedron. This fact explains the formation of $\left[\mathrm{P}_{2} \mathrm{O}_{7} \mathrm{H}_{2}^{2-}\right]_{n}$ chains or ribbons commonly observed in the dihydrogendiphosphates. Such entities are today sometimes designated as 'macroanions'.

References

Averbuch-Роuchot, M. T. \& Durif, A. (1983). Acta Cryst. C39, 27-28.
Averbuch-Pouchot, M. T. \& Durif, A. (1992a). Eur. J. Solid State Inorg. Chem. To be published.
Averbuch-Роuchot, M. T. \& Durif, A. (1992b). Eur. J. Solid State Inorg. Chem. To be published.
Averbuch-Роuchot, M. T. \& Durif, A. (1992c). Eur. J. Solid State Inorg. Chem. To be published.
Boudjada, N. (1985). Dissertation. Univ. of Grenoble, France.
Enraf-Nonius (1977). Structure Determination Package. Version RSX1IM. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
larbot, A. (1971). Thesis. Univ. of Montpellier, France.
larbot, A., Durand, J., Norbert, A. \& Cot, L. (1983). Acta Cryst. C39, 6-8.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1992). C48, 975-978

Hydrothermal Synthesis and Structures of Two Layered Dioxovanadium(V) Phosphates $A\left(\mathbf{V O}_{2}\right) \mathrm{PO}_{4}(A=\mathrm{Ba}, \mathrm{Sr})$

By H. Y. Kang and S. L. Wang
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
and K. H. Lin ${ }^{*}$
Institute of Chemistry, Academia Sinica, Taipei, Taiwan

(Received 20 August 1991; accepted 25 November 1991)

Abstract. Barium dioxovanadium(V) phosphate, $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}, M_{r}=315.256$, monoclinic, $P 2_{1} / c, a=$

[^0]0108-2701/92/060975-04\$06.00
5.616 (2), $\quad b=10.062$ (1), $\quad c=8.727$ (1) $\AA, \quad \beta=$ $90.90(2)^{\circ}, \quad V=493.1(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $4.247 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.70930 \AA, \quad \mu=$ $100.49 \mathrm{~cm}^{-1}, F(000)=568, T=297 \mathrm{~K}, R=0.0239$
(C) 1992 International Union of Crystallography
for 2025 unique reflections. Strontium dioxovanadium(V) phosphate, $\mathrm{Sr}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}, \quad M_{r}=265.536$, monoclinic, $P 2_{1} / c, a=5.430$ (1), $b=9.846$ (2), $c=$ 8.517 (2) $\AA, \beta=90.60(2)^{\circ}, V=455.3$ (2) $\AA^{3}, \quad Z=4$, $D_{x}=3.873 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $136.45 \mathrm{~cm}^{-1}, \quad F(000)=496, T=297 \mathrm{~K}, \quad R=0.0288$ for 844 unique reflections. Single crystals of the title compounds were grown hydrothermally at 503 K . Their structures contain layers of phosphate tetrahedra and edge-sharing bioctahedra, that contain two distorted VO_{6} octahedra, with the divalent metal cations between the layers. Within a layer windows are formed by the edges of four octahedra and four tetrahedra.

Introduction. Although a large number of new compounds have been synthesized and structurally characterized in the system $A-\mathrm{V}-\mathrm{P}-\mathrm{O}$ ($A=$ metal cation) containing V in the oxidation states less than +5 (Wang, Kang, Cheng \& Lii, 1991), little structural work has been reported on the system $A-\mathrm{V}^{5+}-\mathrm{P}-\mathrm{O}$. To our knowledge, $A\left(\mathrm{VO}_{2}\right) \mathrm{HPO}_{4}(A=$ $\mathrm{NH}_{4}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Tl}^{+}$) were essentially the only structurally well characterized examples (Amoros, Beltran-Porter, Le Bail, Ferey \& Villeneuve, 1988; Huan, Johnson, Jacobson, Corcoran \& Goshorn, 1991). The structure consists of isolated chains of VO_{5} square pyramids. Adjacent VO_{5} units in each chain are bridged by HPO_{4} groups. Attempts to add new members to the $A-\mathrm{V}^{5+}-\mathrm{P}-\mathrm{O}$ series of compounds have yielded the layered dioxovanadium(V) phosphates $A\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}(A=\mathrm{Ba}, \mathrm{Sr})$ which adopt a new structure type. The present work describes the hydrothermal synthesis and single-crystal X-ray structure determinations of these new compounds.

Experimental. $\mathrm{V}_{2} \mathrm{O}_{5}(99.9 \%$) came from Cerac and reagent grade $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%), \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ from Merck, and were used as received. A suitable reaction condition for the crystal growth of the Ba compound consisted of a mixture of 0.244 g of $\mathrm{V}_{2} \mathrm{O}_{5}, 0.846 \mathrm{~g}$ of $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$, 0.6 mL of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, and 10 mL of $\mathrm{H}_{2} \mathrm{O}$ in a 23 mL Teflon-lined autoclave. The reaction vessel was maintained at 503 K and autogenous pressure for 4 d before slow cooling at $5 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. The yellow product was filtered off, washed with water, rinsed with ethanol, and dried in a desiccator at ambient temperature. The X-ray powder pattern of the product compared well with that calculated from the single-crystal data. The crystal growth of the Sr compound was achieved under similar conditions. However, powder X-ray diffraction showed that the product was contaminated with a small amount of unidentified materials.
$\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$. Yellow prismatic crystal of approximate dimensions $0.15 \times 0.20 \times 0.25 \mathrm{~mm}$, density not

Table 1. Positional parameters and equivalent isotropic thermal parameters $\left(\AA^{2} \times 100\right)$
U_{cq} is defined as one third of the trace of the orthogonalized U_{ij}

	censor.			
	x	y	z	$U_{\text {eq }}$
$\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$				
Ba	$0.16138(3)$	$0.68667(2)$	$0.08426(2)$	$1.014(8)$
V	$0.6591(1)$	$0.58669(6)$	$0.41399(6)$	$0.75(1)$
P	$0.3445(2)$	$0.38096(8)$	$0.22217(9)$	$0.80(2)$
$\mathrm{O}(1)$	$0.7156(5)$	$0.6716(3)$	$0.6145(3)$	$1.40(6)$
$\mathrm{O}(2)$	$0.4840(5)$	$0.5142(2)$	$0.2332(3)$	$1.07(6)$
$\mathrm{O}(3)$	$0.4956(4)$	$0.7727(2)$	$0.3490(3)$	$1.20(6)$
$\mathrm{O}(4)$	$0.9109(5)$	$0.6255(3)$	$0.3384(3)$	$1.47(6)$
$\mathrm{O}(5)$	$0.3043(4)$	$0.5668(2)$	$0.5152(3)$	$1.03(5)$
$\mathrm{O}(6)$	$0.1236(5)$	$0.4105(3)$	$0.1281(3)$	$1.47(6)$
$\mathrm{Sr}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$				
Sr	$0.83958(8)$	$0.68435(4)$	$0.07688(5)$	$0.65(1)$
V	$0.3352(1)$	$0.58865(8)$	$0.41072(9)$	$0.39(2)$
P	$0.6674(2)$	$0.3882(1)$	$0.2166(1)$	$0.43(3)$
$\mathrm{O}(1)$	$0.2549(6)$	$0.6646(3)$	$0.6173(4)$	$0.7(1)$
$\mathrm{O}(2)$	$0.5279(6)$	$0.5264(3)$	$0.2287(4)$	$0.67(9)$
$\mathrm{O}(3)$	$0.5058(6)$	$0.7789(3)$	$0.3549(4)$	$0.74(9)$
$\mathrm{O}(4)$	$0.0763(6)$	$0.6280(3)$	$0.3278(4)$	$0.8(1)$
$\mathrm{O}(5)$	$0.6949(6)$	$0.5735(3)$	$0.5306(4)$	$0.67(9)$
$\mathrm{O}(6)$	$0.8880(6)$	$0.4159(4)$	$0.1158(4)$	$1.1(1)$

measured. Enraf-Nonius CAD-4 diffractometer, graphite monochromator. 25 reflections ($7.5<\theta<$ 20°) for refining unit-cell parameters. $\omega / 2 \theta$ scan, scan width $(0.70+0.35 \tan \theta)^{\circ}$, scan speed $8.2^{\circ} \mathrm{min}^{-1}$. The space group was determined to be $P 2_{1} / c$ from systematic absences ($h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1$). The $h k l$ data ranged from $-9,0,0$ to $9,16,14 ; 2 \theta_{\text {max }}$ $=70^{\circ}$. Three intensity control reflections measured every 1 h did not exhibit any significant variation. 2336 reflections were collected of which 2025 were unique $[I>3 \sigma(I)$] and were corrected for Lorentz and polarization effects. The data were corrected for absorption ($T_{\min }=0.829, T_{\max }=0.997$). Calculations were performed on a MicroVAX II computer with the SHELXTL-Plus system (Sheldrick, 1990).
$\mathrm{Sr}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$. Yellow prismatic crystal of approximate dimensions $0.16 \times 0.18 \times 0.24 \mathrm{~mm}$, density not measured. Nicolet $R 3 \mathrm{~m} / V$ diffractometer, graphite monochromator. 16 reflections ($6<\theta<16^{\circ}$) for refining unit-cell parameters. $\omega / 2 \theta$ scan, scan width 1.0°, variable scan speed $3-14.6^{\circ} \mathrm{min}^{-1}$. The space group was determined to be $P 2_{1} / c$ from systematic absences $(h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1)$. The $h k l$ data ranged from $0,0,-12$ to $8,13,12 ; 2 \theta_{\max }=55^{\circ}$. Three intensity control reflections measured every 50 reflections did not exhibit any significant variation. 1299 reflections were collected of which 844 were unique $[I>3 \sigma(I)]$ and were corrected for Lorentz and polarization effects. The data were corrected for absorption ($T_{\min }=0.350, T_{\text {max }}=0.877$). Calculations were also performed using the SHELXTL-Plus system.

The two structures were solved using the same strategy: heavy atoms located by direct methods and successive Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F) for all atoms. Scat-

Table 2. Selected bond lengths (\AA), bond valence sums (Σs) and bond angles $\left(^{\circ}\right)$ for $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$

$\mathrm{Ba}-\mathrm{O}\left(1^{1}\right)$	$2.897(3)$
$\mathrm{Ba}-\mathrm{O}(2)$	$2.813(3)$
$\mathrm{Ba}-\mathrm{O}(3)$	$3.078(3)$
$\mathrm{Ba}-\mathrm{O}\left(3^{\text {ii }}\right)$	$2.833(3)$
$\mathrm{Ba}-\mathrm{O}\left(4^{4}\right)$	$3.171(3)$
$\mathrm{Ba}-\mathrm{O}\left(4^{\text {iii }}\right)$	$2.716(3)$
$\mathrm{Ba}-\mathrm{O}\left(5^{\text {iI }}\right)$	$2.679(2)$
$\mathrm{Ba}-\mathrm{O}(6)$	$2.814(3)$
$\mathrm{Ba}-\mathrm{O}\left(6^{\text {(iv }}\right)$	$2.619(3)$
$\sum s(\mathrm{Ba}-\mathrm{O})=2.17$	

$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(2)$	$159.6(1)$	$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	$161.2(1)$
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(3)$	$85.4(1)$	$\mathrm{O}(4)-\mathrm{V}-\mathrm{O}(5)$	$171.2(1)$
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(4)$	$97.4(1)$	$\mathrm{O}(4)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	$105.7(1)$
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(5)$	$79.5(1)$	$\mathrm{O}(5)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	$82.8(1)$
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	$93.1(1)$	$\mathrm{O}\left(1^{v}-\mathrm{P}-\mathrm{O}\left(3^{v}\right)\right.$	$105.3(1)$
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(3)$	$84.6(1)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(1^{v}\right)$	$110.6(1)$
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(4)$	$100.9(1)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(3^{v i}\right)$	$109.7(1)$
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(5)$	$81.1(1)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(6)$	$105.9(1)$
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	$90.6(1)$	$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}\left(1^{v}\right)$	$112.1(2)$
$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}(4)$	$93.1(1)$	$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}\left(3^{v}\right)$	$113.4(1)$
$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}(5)$	$78.5(1)$		

Symmetry code: (i) $-1+x, 1.5-y,-0.5+z$; (ii) $x, 1.5-y,-0.5+z$; (iii) $-1+x, y, z$; (iv) $-x, 1-y,-z$; (v) $1-x, 1-y, 1-z$; (vi) $1-x$, $-0.5+y, 0.5-z$.
tering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV). 83 parameters refined, $R=0.0239, w R=$ $0.0321, \quad S=1.708, \quad w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right], \quad \Delta \rho<$ $1.54 \mathrm{e} \AA^{-3},(\Delta / \sigma)_{\max }=0.001$ for $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4} ; 83$ parameters refined, $R=0.0288, w R=0.0300, S=$ $0.955, \quad w=1 /\left[\sigma^{2}(F)+0.0010 F^{2}\right], \quad \Delta \rho<1.21 \mathrm{e} \AA^{-3}$, $(\Delta / \sigma)_{\max }=0.001$ for $\operatorname{Sr}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$. The largest residual electron densities are near the divalent metal cations. Both structures have a near orthorhombic metric cell. This is just accidental since the axial oscillation photographs taken along the a and c axis do not show a mirror plane symmetry.

Discussion. The atomic coordinates, thermal parameters, selected bond lengths, bond angles, and bondvalence sums (Brown \& Altermatt, 1985) are given in Tables 1-3.* The bond-valence sums for the cations in both structures are in good accord with their formal oxidation states. Both compounds adopt a new structure type.

The structure of $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$, viewed approximately parallel to the c axis, is shown in Fig. 1 and contains layers of dioxovanadium phosphate with the Ba^{2+} ions between the layers. Each layer is built up from distorted VO_{6} octahedra and PO_{4} tetrahedra. Within a layer windows are formed by the edges of four octahedra and four tetrahedra. The Ba^{2+}

[^1]Table 3. Selected bond lengths (\AA), bond valence sums (Σs) and bond angles $\left(^{\circ}\right)$ for $\operatorname{Sr}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$

$\mathrm{Sr}-\mathrm{O}\left(1^{\prime}\right)$	2.720 (3)	$\mathrm{V}-\mathrm{O}(1)$	1.965 (3)
$\mathrm{Sr}-\mathrm{O}(2)$	2.646 (3)	$\mathrm{V}-\mathrm{O}(2)$	1.977 (3)
$\mathrm{Sr}-\mathrm{O}(3)$	3.138 (3)	$\mathrm{V}-\mathrm{O}(3)$	2.146 (3)
$\mathrm{Sr}-\mathrm{O}\left(3^{\prime \prime}\right)$	2.630 (3)	$\mathrm{V}-\mathrm{O}(4)$	1.614 (3)
$\mathrm{Sr}-\mathrm{O}\left(4^{\text {i }}\right.$)	3.102 (3)	$\mathrm{V}-\mathrm{O}(5)$	2.199 (3)
$\mathrm{Sr}-\mathrm{O}\left(4^{\text {iII }}\right.$)	2.544 (3)	$\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	1.681 (3)
$\mathrm{Sr}-\mathrm{O}\left(5^{\text {i }}\right.$)	2.540 (3)	$\sum s(\mathrm{~V}-\mathrm{O})=5.07$	
$\mathrm{Sr}-\mathrm{O}(6)$	2.677 (4)		
$\mathrm{Sr}-\mathrm{O}\left(6^{\text {iv }}\right)$	2.430 (4)	$\mathrm{P}-\mathrm{O}\left(1^{v}\right)$	1.561 (4)
$\sum s(\mathrm{Sr}-\mathrm{O})=2.11$		$\mathrm{P}-\mathrm{O}(2)$	1.560 (3)
		$\mathrm{P}-\mathrm{O}\left(3^{\text {v }}\right.$)	1.550 (4)
		$\mathrm{P}-\mathrm{O}(6)$	1.506 (4)
		$\sum s(\mathrm{P}-\mathrm{O})=4.88$	
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(2)$	160.8 (1)	$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	159.8 (2)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(3)$	88.1 (1)	$\mathrm{O}(4)-\mathrm{V}-\mathrm{O}(5)$	170.0 (2)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(4)$	95.7 (2)	$\mathrm{O}(4)-\mathrm{V}-\mathrm{O}\left(5^{\text {V }}\right.$)	105.7 (2)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(5)$	79.3 (1)	$\mathrm{O}(5)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	83.5 (2)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}\left(5^{v}\right)$	94.1 (1)	$\mathrm{O}\left(1^{2}\right)-\mathrm{P}-\mathrm{O}\left(3^{\text {n }}\right.$)	106.4 (2)
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(3)$	82.2 (1)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(1^{v}\right)$	110.9 (2)
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(4)$	101.4 (2)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(3^{\text {v1 }}\right.$)	109.8 (2)
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}(5)$	82.4 (1)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(6)$	105.6 (2)
$\mathrm{O}(2)-\mathrm{V}-\mathrm{O}\left(5^{*}\right)$	89.6 (1)	$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}\left(1^{2}\right)$	111.6 (2)
$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}(4)$	94.0 (2)	$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}\left(3^{\text {vi }}\right)$	112.6 (2)
$\mathrm{O}(3)-\mathrm{V}-\mathrm{O}(5)$	77.2 (1)		

Symmetry code: (i) $1+x, 1.5-y,-0.5+z$; (ii) $x, 1.5-y,-0.5+z$; (iii) $1+x, y, z$; (iv) $2-x, 1-y,-z$; (v) $1-x, 1-y, 1-z$; (vi) $1-x$, $-0.5+y, 0.5-z$.

Fig. 1. Stereoscopic view of the $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$ structure in a direction approximately parallel to the c axis. The $\mathrm{Ba}-\mathrm{O}$ bonds are represented by dashed lines. Thermal ellipsoids are shown at the 60% probability level.

Fig. 2. View of the $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$ structure along the a axis. Thermal ellipsoids are shown at the 60% probability level.
ions are located above as well as below each window which align the windows so that straight tunnels are formed running along the a axis (see Fig. 2).

Two neighbouring VO_{6} octahedra form an edgesharing bioctahedron with a $\mathrm{V} \cdots \mathrm{V}$ distance of 2.928 (1) \AA. Each distorted VO_{6} octahedron consists of two very short, two medium and two long V - O bond distances with one of the O atoms, $\mathrm{O}(4)$, not being shared with P and coordinated to the Ba^{2+} ions only. The two very short V-O bonds are cis to each other and the bonds trans to them have long $\mathrm{V}-\mathrm{O}$ distances. Atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$, which are trans to each other, have two medium-length $\mathrm{V}-\mathrm{O}$ bond distances. Each PO_{4} group has two O atoms that bridge the nonbonding $\mathrm{V} \cdots \mathrm{V}$ contact within a bioctahedron, one O atom being coordinated to a neighbouring bioctahedron, and one O atom to the Ba^{2+} ions only. The P tetrahedron is slightly distorted as shown by three long $\mathrm{P}-\mathrm{O}$ distances of $\sim 1.55 \AA$ and a short one of $1.507 \AA$. Atom $\mathrm{O}(6)$, which is not shared with V , shows the shortest $\mathrm{P}-\mathrm{O}$ bond. The Ba^{2+} ions are nine coordinated by O atoms from adjacent layers. The coordination number is determined on the basis of the maximum gap in the $\mathrm{Ba}-\mathrm{O}$ distances ranked in increasing order.

The Sr phase is isostructural with $\mathrm{Ba}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$. It should be noted that the Pb analogue can also be obtained under similar reaction conditions. Preliminary work on a crystal of $\mathrm{Pb}\left(\mathrm{VO}_{2}\right) \mathrm{PO}_{4}$ of reasonable quality showed that it was isostructural with the Ba compound. The indexed cell dimensions of the Pb compound are $a=5.505(2), \quad b=9.913$ (3), $c=$ 8.511 (3) $\AA, \quad \beta=90.50(3)^{\circ}$ and $V=464.4$ (3) \AA. However, the Ca and Mg analogues have not been obtained under similar reaction conditions.

Financial support from the National Science Council and the Institute of Chemistry, Academia Sinica, is gratefully acknowledged.

References

Amoros, P., Beltran-Porter, D., Le Bail, A., Ferey, G. \& Villeneuve, G. (1988). Eur. J. Solid State Inorg. Chem. 25, 599-607.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244 247.
huan, G., Johnson, J. W., Jacobson, A. J., Corcoran, E. W. Jr \& Goshorn, D. P. (1991). J. Solid State Chem. 93, 514-525.
Sheldrick, G. M. (1990). SHELXTL-Plus, release 4.11. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. Wang, S. L., Kang, H. Y., Cheng, C. Y. \& LiI, K. H. (1991). Inorg. Chem. 30, 3496-3499, and references cited therein.

Acta Cryst. (1992). C48, 978-982

Structure of $\mathbf{K Y F}_{4}$

By Y. Le Fur
Laboratoire de Cristallographie, Associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France
N. M. Khaidukov
N. S. Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Pr., 117907 Moscow, Russia

and S. Aléonard
Laboratoire de Cristallographie, Associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 17 June 1991; accepted 22 November 1991)

Abstract

Potassium yttrium tetrafluoride, KYF_{4}, M_{r} $=204.0$, trigonal, $\quad P 3_{1}, \quad a=14.060(10), \quad c=$ $10.103(10) \AA, \quad V=1729(5) \AA^{3}, \quad Z=18, \quad D_{x}=$ $3.49 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Ag} K \alpha)=0.5594 \AA, \mu=87.93 \mathrm{~cm}^{-1}$, $F(000)=753$, room temperature, final $R=0.038$ for 3045 independent reflections. KYF_{4} is a fluoriterelated superstructure. Cations are distributed on three layers perpendicular to the c axis. In each layer,

chains of YF_{12} groups formed by two F pentagonal bipyramids surrounding the Y atoms alternate with chains of F edge-shared distorted cubes surrounding the K atoms.

Introduction. In an initial study (Le Fur, 1977; Aléonard, Le Fur, Pontonnier, Gorius \& Roux, 1978), we have shown that the hexagonal lattices of the phases

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54898 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR0009]

